

HFT Fire \& Rescue Tech. \& Equip., LLC - www.HydraulicsApp.com - Copyright © 2016-2020 - ALL RIGHTS RESERVED - (877) HOSEROLLER [467-3765]

"Is not Friction Loss a direct mathematical function of Gallons Per Minute?" Each individual (GPM Laffected section of hose is subject to: [ Friction Loss (FL) = (GPM/100)^2 * $C^{*} L / 100^{\prime}$ ] (SDTDC-2005: "C" for 1.5 " hose is 35 and 1 " is 250) On a $32 \%$ Grade, the Standard method MUST STOP at 600' before exceeding MAX 400 PSI ; or @ 1,100', pump DOWNHILL -288 ' The 'HENWAY ' pumps 75 GPM (56\% > 'Knock-Down' than 60 GPM) @ 500' /83\% FARTHER and 639' MORE HEAD for SAFETY!


| "HEN-WAY " |
| :--- |
| Attack fire w/ one |

(1) 1.5 " hose; lay 'Supply' line dry. At 600', 1,000' \& 1,400': Attach (2) Dbl. Females, a 'reversed' GatedWye, a Dbl. Male, an 1.5" X 1" Tee, and a Gated-Wye. Charge secondary 'Supply' line ONLY AFTER connected; (radio) CONFIRM ! RULE OF THUMB: Install at any time Nozzle Pressure reduces; STOP at MAX 400 PSI (EP) 29 CFR 1910.156(c)(1) \& (2) NFPA 1002/1041 REQUIRES YOU to STOP at 400 PSI! - FIREFIGHTER SAFETY -
"NP" and "EL" ("A" is 'NUL') Pressure Losses are one (1) variable for up to all laterals flowing simultaneously in both 'ATTACK' vs. 'OVERHAUL' modes. The remaining pressure LESS from the MAX 400 PSI when divided by 0.434 PSI/ft. determines the MAX $( \pm)$ HEAD; \% Grade then verifies the MAX Length.
Use 'OVERHAUL' inserts AFTER containment. ALL pressures are 'Color-Coded' to indicate you're in the DANGER ZONE if ' ATTACK' PRESSURES are required for an ESCAPE or severe BLOW-UP!

HFT Fire \& Rescue Tech. \& Equip., LLC - www.HydraulicsApp.com - Copyright © 2016-2020 - ALL RIGHTS RESERVED - (877) HOSEROLLER [467-3765]

## DO THE MATH!

This is a 1,000 hoselay as illustrated:
There are eight (8) contour lines.
Each contour line is 40 feet INCREASED elevation. Eight (8) times ( X ) 40'/contour line $=320^{\prime}$

320 ' over a 1,000 run is a $32 \%$ Grade 320' times 0.434 PSI/ft. = 139 PSI HEAD pressure.

Per NFPA 1002, 139 PSI HEAD pressure LOSS [PLUS TOTAL (FL) AND (NP)] MUST BE COMPENSATED at the pump for SAFETY!

The Standard method must STOP at 600' on a $32 \%$ Grade upon utilizing 75 GPM /10 GPM nozzles for HEAVY FIRE ATTACK for far BETTER PROTECTION and EFFICIENCY to INCREASE FIREFIGHTER SAFETY!

Upon extending only 100' from 900' feet to 1,000', FL increases by only 19.7 PSI or 6\%...

BUT when extending only 100 from 1,000 ' to 1,100 ' and therefore ADDING a FIFTH (5th) lateral at 10 GPM, the OVERAL FLOW from the Engine to the first lateral INCREASES from 115 GPM to 125 GPM, PLUS the Friction Loss (FL) of each AFFECTED section thereafter, to cause FL to INCREASE a FULL 90 PSI at 28\%! The calculated evidenced increase in Friction Loss SHALL NOT EVER be disregarded EVER to ensure our highest priority: FIREFIGHTER SAFETY!

The 'dual-hoselay' HEN-WAY method, reduces the TOTAL GPM to supply the ATTACK nozzle and each Lateral by one-half ( $1 / 2$ ); thus the square of the fraction (GPM/100) is $1 / 2 \times 1 / 2=$ $1 / 4$; Friction Loss in each AFFECTED SECTION is therefore reduced by an INCREDIBLE:
75\% LESS FRICTION LOSS!!!

Thus, a 75 GPM /10 GPM hoselay limited to 600' (at 25\% MORE flow and therefore 56\% MORE "KNOCKDOWN" than 60 GPM) can be SAFELY EXTENDED an additional 500' (83\% further) to 1,100' ...and yet a FULL 639' higher (351' uphill vs. -288' downhill) to significantly INCREASE FIREFIGHTER SAFETY!

Not only can we then extend another 400' to 1,500' at 25 GPM (150\% farther) on a 32\% Grade flowing 75 GPM in short bursts (balloon effect), but we can also isolate (w/ hose clamps) and deploy/extend any portion of the 'Supply Line' as we suspend the main 'Attack' nozzle and ALL unnecessary laterals to quickly ATTACK any 'ESCAPE' at FULL 75 GPM flow! - 1,066\% SAFER 'Knock-Down' than any 10/23 GPM lateral! The "Holy Grail" of Wildland Firefighting is finally met upon confirmed personnel accountability and location; critical to estimate (+) or (-) HEAD that exponentially fulfills PRIORITY ONE: PERSONNEL SAFETY!


Get the APP that this technology is perfectly matched for at: https://GAIAGPS.com Instructional videos: http://video.hydraulicsapp.com

## HFT Fire 'TOTAL' Engine Pressure Slide-Rule Calculator



The Scenario

'HENWAY' at 248 PSI


|  $32 \%$ Grade, the Standard method MUSTS STOP at $600^{\prime}$ 'before exceeding MAX 400 PSI; or 1 1,100', pump DOOWNHIL - 288 The 'HENWAY' 'uumps 75 GPM $(55 \%>$ ' Knock-Down'than 60 GPM) @ 500 ' $83 \%$ EARTHER and 639 ' MORE HEAD for SAFETVI |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| "HEN-WAY" 29 CFR 1910.156(c)(1) \& (2) |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | \%-10 ${ }^{10}$ | (1) $1.5^{11}$ hose; lay Supply' line dry | YOU to STOP at $400 \mathrm{PSSI!}$ |  |
|  |  |  |  | - FIREFIGHTER SAFETY - |  |
|  |  | $\{-10$ |  |  |  |
|  |  |  |  |  |  |
| 31. | 38.6. 3.5 | 2.6) ${ }^{2.5}$ | 'reversed Gated. |  |  |
|  |  | $\frac{63}{63} \frac{13,73}{13,7.5}$ |  | 'ATTACK' vs. OVEEHAUL' modes. |  |
|  |  |  |  | Max 400 Ps uhen divided b 0.0434 |  |
|  |  |  |  |  |  |
| , |  |  | Supaly | PSI/ft. determines the MAX $( \pm)$ HEAD; \% Grade then verifies the MAX Length. |  |
|  | (283, |  | $\sqrt{\text { ATTEE }}$ | Use 'OVERHAUL' inserts AFTER |  |
|  | Llefore HEOOT: 525 |  | RULE OF THMME: | containment. ALL pressures are 'Color-Coded' to indicate you're in |  |
|  |  |  |  |  |  |
|  | Aval: Prassurato.000: 1235 |  | Norile Pressur redues stop | the DANGER ZONE if 'ATACK' |  |
|  |  | . |  | APE or severe BLOW-UP! |  |
|  |  |  |  |  |  |

1. Select 'HENWAY' or 'Standard' method.
2. Extend insert to current hoselay Length (i.e. 1,100 ' at 75 GPM) 3. Determine NP + FL per number of laterals operating. (i.e. " $\underline{\text { " }}$ " Lat.) 4. Rotate Dial "A"

(i.e. 248 PSI on flat ground) 5. Count the 40' contour lines on a USGS map to estimate elevation.
(i.e. 8.75 X 40'~350')
3. Rotate Dial "A" until HEAD in feet lines up with FL + NP of Step 4. (i.e. EP $=$ MAX 400 PSI)

